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A fast numerical method is developed to find an approximate solution to a general class 
of mildly nonlinear elliptic partial differential equations with Dirichlet boundary conditions 
in one, two, and three dimensions. The method is based on a local mesh refinement tech- 
nique which provides an initial guess for iterative algorithms, and can be used to Mine the 
mesh in multigrid methods. 

1. INTRODUCTION 

The local inversion method, LIM, will first be described for the one-dimensional 
boundary value problem 

d + cl.4 = f(x), 

u(O) = %J , u(1) = 241. 
(1) 

The basic idea is to expand a solution known on a coarse mesh to a fine mesh while 
maintaining high accuracy. The generalization of the method to higher dimensions 
and other equations will be discussed later. 

Suppose the solution to Eq. (1) is known at the points xZi but not x26+1 , i = 
0, 1, 2 )..., iV on the evenly spaced grid shown in Fig. 1. A finite difference approxima- 
tion of Eq. (1) by Taylor series expansion of the solution about the point xzi+l is 

$ C"2* - 2u2i+l + u2*+21 + CUZi+l =fii+l + gUfmy 

or 
1 

~ (U2i + Usi+2 
h*u’“’ 

hi+1 = 2 _ hBC - hahi+ - 12c2 _ h2c) , @a) 
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FIG. 1. The unit interval is divided into 2N equally spaced mesh points. The solution is known 
at x$( hut not at x*~+~, i = 0, 1, 2 ,... N. 

where pi = U(Xi), fi =f(xi), and h =; Xi+1 - Xi . Equation (2a) gives US an approxi- 
mate solution to Eq. (1) at Xpi+l . This approximation can be improved by estimating 
the leading error term and eliminating it. zP is easily approximated by differentiating 
Eq. (1) twice, solving for Us and using a centered difference scheme to estimate f2:+l . 
The resulting equation is 

u2i: 1 = u2i + U2i+2 - Ch2/12)lfii +fii+2 + (lo - Ch2)f2i+ll + qpj..... (2bj 
2 - ch2 + (c%‘/l2) 

This refinement process can now be repeated to approximate the solution at the 
midpoints of the Xi until the desired resolution is obtained. The method is self-starting 
since the original coarse grid may be the boundary conditions. When used as a self- 
starting method, the error remains approximately 

O(h6) = (h6/1440)(5f” - 2P) = O.OOool(5f” - 2u”“). (3) 

This error can be estimated by finite differences at selected points on the final mesh. 
If the solution is relatively smooth, the error may be quite acceptable. Otherwise, 
another method must be used to start the LIM on a finer original mesh. (Remark: 
By using more function values, or deferred corrections [q, the error can be reduced 
even further.) 

The refinement does not depend heavily on the constancy of c or the linearity of the 
original equation. The difference approximation to the equation needs only to be 
solved for t(zi+l as a function of its neighbors, where the solution is known. For 
complicated nonlinear problems the LIM can be used to give a good initial guess of 
the solution. This approximation can be improved using a standard iterative method 
such as nonlinear SOR. In two- and three-dimensional problems, the savings in using 
a combination of methods is substantial. 

2. TWO-DIMENSIONAL PROBLEMS 

The LIM in two dimensions will be described for the equation 

Au + cu = f(x, y) in De 

24 = gk Y> on aD2. 
(4) 

D2 is the unit square and aD2 is its boundary. Suppose that the solution is known at 
the points (X2i , yu) i, j = 0, 1, 2 ,..., N on the evenly spaced 2N x 2N grid in Fig. 2a. 
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FIG. 2. (a) The solution to Eq. (4) is known at the . points, (xtl, xpl) i, j =- 0, 1, 2 ,... N. (b) 
Equation (5a) provides an approximate solution at the x points, (x*<+~, xlj+d i, j = 0, 1, 2,... 
N - 1. (c) Equation (5b) uses the x point to approximate the solution at the + points, (Xni+l , Xa) 
or (xti , xp,+,) i, j = 0, 1, 2 ,... N. 

At the point (Xzi+l , Y~+~) by rotating the standard five-point difference approximation 
to Eq. (4) by 90” we have 

(1/2h*)(U*i,ti + &i+*,*j + U*i.*j+* t- u*i+*.*j+* - 4U*i+1.tii-l) + cu2i+l.21+l 

Ef2i+l.2f+l + o(h2)9 

or 

u2i+1.2j+l = 
u2i.(u -1- u2i+2.2j + U*i.ti+* + U*i+n.ti+z - 2h2f2i+1.ti+l 

4 - 2hac 
+ O(h4). (5a) 

These points are called x points since they use the four corners of the surrounding 
grid points to approximate the solution in the center. Figure 2b shows their location 
graphically. 
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The remaining points (X 21+1, JQ and (xzi, yzi+3 use the standard five point 
+ difference scheme to approximate the Laplacian. At these points the finite difference 
analog of Eq. (4) is 

uk.Z = 
uk-l.Z-l + uk+l.Z-l + uk-l.Z+l + uk+l.Z+l - h2f,,Z + 

4 - h2c 
o(hd) 

, (5b) 

where 
k=2i+l k = 2i i,j= 1,2 )...) iv - 1, 

or 
I = 2,j I= 2j+ 1. 

Equation (4) is now solved on a 4N x 4iV grid. The process can be repeated refining 
the solution to an 8N x 8N grid. 

This method exactly reproduces two-dimensional cubic polynomial solutions and 
works well for equations with smooth solutions. A higher order LIM which reproduces 
two-dimensional quintics when c # 0 uses the two equations 

1 
u2i+1.2i+l = 4 [ ux - & (8 + MC - 10h2ac)f,~+l,2j+l 

+ ; (2 - h2ac).f+ - d (4 + h”ac) 7x1, 

where 

(64 

and 

- 
ux = u2i.2j + u2i+2,25 + u2i,z1+2 + u2i+2.2i+2 T 

TX =f2t,u +fii+2.2.4 +fic.el+z +“fk+2.25+2 3 

I+ = f21+1,2i+2 +fii+l.Zj f&+2.2$+1 +.fkU+l 3 

a = 2/(12 + ch2), 
b = h2 - (l/12) ch4 + (l/24) hsc2u, 

uk.z = j-& [E+ + & (2 - 3bc + 5h’aC)fk.z + j$ (2 - h2uc)f+ 

- & (1 + h”4fx], (6’9 
with 

a+ = uk.Z+l + uk.Z-1 + uk+l.Z + uk-l.Z 7 

f+ =fk.Z+l +fk.Z-1 +fk+l.Z +fk-1.t 3 

& = fk-1.1-l +fk+l.Z-I +fk--l.Z-1 +fk+l.Z+l 3 

u = 2/(12 + ch2), 
b = ha - (l/12) ch4 + (l/24) h6c2a, 

where 
k = 2i + 1 or k = 2i, i,j= I,2 ,..., N-l, 
I = 2j I= 2j+ 1. 
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FIG. 3. (&) The original solution is known only on the boundary of the unit square. (b) Using 
the boundary data and f(& 4) an approximate solution is found at (i, 4). (c) Equations (6a, b) 
refine the mesh to 4 x 4. (d) The mesh is refined to 8 x 8. (e) The mesh is refined to 16 x 16. (f) 
The mesh is!refined to 32 x 32. 

As in one dimension, the LIM is self-starting. However, for solutions with sharp 
gradients more accuracy is obtained when it is combined with other standard methods 
such as SOR, Hackney’s or Buneman’s method [2, 4, 51. It has also been used success- 
fully in the mesh refinement stage of Brandt’s multigrid method [l]. An initial approxi- 
mation of the solution on a coarse mesh may also be found using a high-order LIM 
developed by using many boundary points and more internal function values. It was 
found rarely necessary to start with more than 9 internal points when using Eqs. (6) 
to refine the mesh. 
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3d 

3f 

FIG. 3. Continued 

Figure 3 displays how the self-starting LIM using Eqs. (6) refines the solution to 
Eq. (4) on a 32 x 32 grid with c = -1 and the solution 

u = -(2x - 1)(2y - 1)(X + y)(x + y - 1)(X + y - 2). 

The solution is a two-dimensional quintic and therefore LIM is exact. 
In Section 5 a nontrivial example is analyzed comparing Eqs. (5) and (6). 

3. THREE-DIMENSIONAL PROBLEMS 

We again describe the LIM for Poisson’s Equation with Dirichlet boundary condi- 
tions, 

‘4u + cu = f(x, Y, 2) in Bs, 
24 = &GY,d on 803. (7) 
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Refining the mesh in three dimensions is similar to the algorithms described in one and 
two dimensions. In one dimension a single finite difference formulation of the equation 
was necessary to solve for the unknown points. In two dimensions two different 
finite difference schemes were necessary to solve for the unknown points. In three 
dimensions four finite difference formulations of Eq. (7) are needed to refine the mesh. 

Assume that the solution to Eq. (7) is known on a 2N x 2N x 2N evenly spaced 
grid at the points (xzi , yzj , zzle) i, j, k = 0, 2 ,..., N. We first approximate the solution 
at the midpoint of each cube of points where the solution is known i.e., the points 
(x2i+l , yzj+l , zzk+d. At these points 

1 
~2i+1,2i+1,2k+l - * _ 4h2C ("2i.2j.2k + U2i,2j+2,2k + U2i.2j.2k+2 

+u. 22,21+2,2k+2 + U2i+2.25,2k + u2i+2.2j+2.2k 

+ U2i+2.2i,2k+2 + U2i+2,2i+2.2k+2 - 4h2f,i+1.2f+1.2k+l) + O(h”)* 
(84 

The solution at the remaining points are at the center of an octahedra of known 
points and can be approximated by one of the following difference schemes. 

1 
Ut,Vl.?2 = 8 _ 2jjQ mwn,n + 2~l+l**,n + Uz.m.n+1 + ~z.m-l.n-l+ Uz.m+l.n-1 

+ Uz,m+1,n+1 - wL.n) + O(h3, 

1 = 2i /=2i$l 

m=2j+l or m = 2j i,j,k = 1,2 ,..., N- 1, (W 

n = 2k + 1 n = 2k 

1 
%m.n = 8 _ 2,,Q mz,m-1.n + 2uz.nL+1.n + Uz-1.m.n-1 + Uz+l.m.n-1 

+ Uz-1,m.n+1 + Uz+1,m.n+1 - 2~2fi*7n,n) + W4h 

1=2i+l 1 = 2i 

m = 2j or m=2j+l 

n=2k+l n = 2k i,j,k = 1,2 ,..., N- 1, (84 
or 

1 
'b&n = 8 -22h2c (2uz*m,n--1 + 2uz,m.n+1 + Uz-l,rn-1.n + Uz+1.m-1.n 

+ uz--l.m-1.n + ~z+l,m+l.n - Wtim.n) + W4), 

1=2i+l I = 2i 

m=2j+l or m = 2j (84 

n = 2k n=2k+l i,j, k = I,2 ,..., N- 1. 
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4. GENERALIZATIONS 

A square mesh is not a necessity but a convenience when using the LIM. The differ- 
ence equations are easily adopted for rectangular meshes. The refined mesh rectangles 
are similar to the original rectangular region, and the difference formulation of the 
equation is invariant as the mesh is refined. Nonrectangular regions such as the L- 
shaped region in Fig. 4 should be subdivided into rectangles and refined simultaneously. 

40 

: 

FIG. 4. (a) Dirichlet data is given on an L-shaped region. (b) An approximate solution is con- 
structed using Eq. @a). (c) The solution is retined using Eq. (Sb). The mesh can be refined further 
by repeating this process. 

Local refinement as illustrated in Fig. 5 presents no problems for the method. This is 
particularly useful in two and three dimensions where, after the equation has been 
solved, finer resolution is needed in a small portion of the solution. The LIM provides 
high accuracy and less work than spline interpolation methods and will display local 
behavior which traditional interpolator-y methods may miss. 

FIG. 5. The mesh is refined only in a neighborhood of the center. The refined solution will 
exhibit local behavior which standard interpolation methods may miss. 
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For Neumann and periodic boundary value problems the method can be success- 
fully applied after an initial approximation is made using another method. In two and 
three dimensions, as the mesh is refined, boundary points must also be calculated. 
The boundary points are found by constructing fictitious points outside the region. In 
two dimensions the boundary points are x points, and in three dimensions they are 
centers of octrahedra. 

5. IMPLEMENTATION AND NUMERICAL RESULTS 

A Fortran subroutine was written to expand a solution of 

Aufcu-f in DM 
(9) 

u=g on iYDM A4 = 1, 2, 3. 

The programs were compiled and run using the CHAT compiler on a CDC 7600 at 
Los Alamos Scientific Laboratory. A major advantage of the LIM is the simplicity 
of the code. The subroutine to expand a solution to a finer mesh was only 28 Fortran 
statements in two dimensions and 73 statements for three-dimensional problems. 

Figure 6 reflects the results of a series of two-dimensional tests on the unit square 
with c = -1 and the solution 

24 = lo& + 1/4j2 + (y + l/4)7. 

The equation was approximated with Buzbee’s excellent Buneman elliptic PDE 
solver, the LIM and a combination of the two. The self-starting LIM approximated 
the initial center point by inverting the finite difference formula for the Laplacian 
from Collatz [3, p. 5421, 

ui,j = W/4) + (h2c/52M4E+ + &xl - (h2/52)(4f+ +.7x) - h% + O(he) 
5 - h2c 

(1o) 

- - 
u+ 3 u J x9 +v and?, are defined as in Eqs. (6). Either Eqs. (5) or Eqs. (6) could have 
been used to approximate the center point, however, Eq. (10) was used since it has a 
significantly lower truncation error. 

Once the solution is approximated on a 5 x 5 grid, the center point can be recom- 
puted by its nearest neighbors using Eq. (10). The mesh refinement is then restarted 
on a 3 x 3 grid using the new value for the center point. As Fig. 6c shows this proce- 
dure can greatly improve the accuracy. A second iteration using the newly computed 
solution on a 5 x 5 grid to again approximate the center point reduced the error in 
Fig. 6c by one-half. Further itterations did not significantly improve the accurary in 
this example. 

Figure 6 confirms that, when refining a very coarse mesh, accuracy is gained by 
using a higher-order LIM. Once the local truncation error of the LIM interpolation 
is less than the accuracy of the initial interior starting points there is no advantage in 
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Mesh 9x9 17 x 17 65 x 65 129 x 129 

a. 

b. 

C. 

d. 

Average error 
Maximum error 
CPU time 

Average error 
Maximum error 
CPU time 

Average error 
Maximum error 
CPU time 

Average error 
Maximum error 
CPU time 

Average error 
Maximum error 
CPU time 

Average error 
Maximum error 
CPU time 

Average error 
Maximum error 
CPU time 

4.6 x 1OW 
3.2 x lo-* 

0.0003 

7.5 x 10-e 
2.6 x 1O-s 

0.0007 
3.0 x 10-t 
9.4 x 10-a 

0.0015 

LIM 
4.0 x 10-a 
3.2 x 1O-2 

0.001 

6.4 x 1O-4 
2.6 x 1O-5 

0.003 

2.6 x 1O-4 
9.4 x lo-’ 

0.004 

2.3 x 10-O 2.0 x 10-n 
1.6 x lo-’ 1.6 x lo-’ 

0.002 0.08 

Buneman 

1.2 x 10-2 2.7 x lo-’ 
3.1 x 10-s 8.1 x 10-a 

0.002 0.01 

1.5 x 10-6 
5.1 x 10-s 

0.20 

3.6 x 1O-3 
3.2 x 1O-2 

0.016 

5.8 x 1O-1 
2.6 x lo-$ 

0.08 

2.3 x lo-* 
9.4 x 10-a 

0.08 

2.4 x lo-’ 
8.1 x lo-’ 

0.04 

2.4 x lo-* 
8.1 x 1OF 

0.015 

3.5 x 10-S 
3.2 x lo-* 

0.06 
5.7 x 10-4 
2.6 x lo-’ 

0.18 

2.3 x lo-’ 
9.4 x 10-4 

0.18 

2.4 x 1O-4 
8.1 x lo-* 

0.17 

2.4 x IO-* 
8.1 x lo-’ 

0.06 

1.8 x 1O-s 
1.6 x lo-’ 

0.18 

3.8 x 1O-g 
1.3 x 10-h 

0.89 

FIG. 6. 7600 CPU times in seconds and relative errors in approximating the solution to Eq. (9). 
{a) Self-starting LIM using Eqs. (5) and Eq. (10). (b) Self-starting LIM using Eqs. (6) and Eq. (10). 
(c) The center point is recomputed with Eq. (10) from the approximation in (b) on a 5 x 5 grid. 
(d) Equations (6) refine the 17 x 17 Buneman solution. (e) Equations (5) rehne the 17 x 17 Buneman 
solution. (f) Equations (6) refine the exact solution at 9 internal points. (g) Buneman solution using 
Buzbee’s package. 

using the higher order formulas. In Fig. 6f we see that if a few internal points are 
known accurately then the solution can be refined effectively. 

Equation (9) was also solved for simple three-dimensional test problems using 
Eqs. (8). The 7600 CPU time to refine the solution to a 32 x 32 x 32 mesh was 0.15 
sec. No comparisons in accuracy have been made with other methods. 

To approximate the solution to Eq. (9) at N points requires O(N) operations and 
storage allocations. Therefore, these execution times scale linearly for larger problems. 
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